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Abstract—Axisymmetric indentation problems of an elastic layer supported by a Winkler foun-
dation are studied in this paper. The indentation on the upper surface is made by a rigid axisymmetric
conical, paraboloidal or ellipsoidal indenter. Fundamental solutions for an arbitrary surface load
are derived first. The above problems are formulated into an integral equation which is solved
numerically. Extensive results are provided for contact radii. displacements and contact pressures.
A layer on a rigid smooth base is treated as a special case of the Winkler foundation. The associated
analytical solutions for the rigid indenters on a half space are retrieved as the layer depth approaches
infinity. Conversely, useful relations are also derived from thin plate theory for relatively shallow
layers.

INTRODUCTION

Axisymmetric contact of an elastic, homogencous and isotropic layer supported by a
Winkler foundation is studied in this paper. The elastic layer has a finite depth and
infinite in-plane dimensions. The upper surface of the layer is subjected to axisymmetric
deformations imposed by a rigid conical, paraboloidal or cllipsoidal indenter. The contact
is tensionless and frictionless. Prior to treating these particular applications, the fundamental
full-ficld clasticity solution for an arbitrary axisymmetric load is presented. Solutions are
also provided for a layer on a rigid smooth base which can be considered as a special case
of the Winkler foundation.

Solutions to problems involving a layer supported by foundations modeled as a Winkler
medium have many applications, particularly in geophysics, and the geotechnical and
ice engincering fields (Westergaard, 1926 ; Hetényi, 1946; Timoshenko and Woinowsky-
Krieger, 1959 ; Scivadurai, 1979 ; Turcotte, 1979 ; Ashton, 1986). A general treatment of a
layer supported by another layer or a half space was first presented by Burmister (1945).
Rather surprisingly there has apparently been no such treatment provided for a layer
supported by a Winkler foundation other than the study by Nevel (1970) for a uniformly
distributed load over a circular area. However, a survey of the literature revealed that there
have been a considerable number of studies involving plates on Winkler foundations. From
the comparisons made in this paper between plate solutions and layer solutions, thin plate
theory cun be used only if the ratio of the characteristic length to the layer depth is large
enough. Furthermore, plate theories do not readily furnish an accurate representation of
the associated contact pressure distributions, the indentation and applied load versus extent
of contact, and the local stresses and moments in most cases.

The limitations of the Winkler foundation model have long been known, particularly
in the context of geotechnical engineering (Terzaghi, 1955). Horvath (1989) recently traced
the historical development of improvements to Winkler's model. In spite of the uncertaintics
associated with Winkler's subgrade model, American foundation engineering practice with
regard to subgrade models used in routine design practice has changed very little over the
last four decades. However, in geophysics (e.g. crustal flexure, Turcotte, 1979) and in ice
engincering (Ashton, 1986) the Winkler model is used with far less uncertainty. In fact, the
bearing capacity of ice sheets is characterized in terms of the characteristic length, with the
Winkler modulus being given by the specific weight of water; the current method to
determine the modulus of elasticity of a floating ice sheet is to determine the characteristic
length (Sodhi ef al.. 1982).
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Using the fundamental elasticity solution for an arbitrary surface load presented in
the Appendix, the title problems are reduced to the solution of a single integral equation.
This integral equation is formulated in terms of a rather arbitrary indenter profile. The
primary physical equations sought are the contact pressure distributions. contact radi,
moments and indentations. Comparisons are made with the asymptotic half space and rigid
base solutions. including very thin layer approximations in the latter case. As an
approximation of a softer foundation or relatively shallow layer. thin plate solutions are
also derived. These solutions are themselves useful in providing directly the most suitable
normalized variables as well as a clear indication of the overall necessity of the full-field
elasticity solutions provided in this paper.

All three indentation problems belong to a class characterized by Dundurs (1975) as
advancing contact, for which the loaded contact regions are not contained within the initial
contact regions. An important feature of advancing contact is that the relations among
load. contact radius, displacements and stresses are nonlinear. This can be verified from
the results throughout this paper. The results presented do not vary with Poisson’s ratio
except the bending moment and stresses, in which case v = 0.3 is used.

FORMULATION

The axisymmetric problem of an infinite layer supported by a Winkler foundation and
axisymmetrically loaded on the upper surface by a pressure p(r) can be described as follows

{(Fig. L

a(r.0)y = —p(r). 1,.(r.0) =0, (la,b)
ofr .y = —kw{r. hy, t.{r.) =0, (led)
where & s the stiffaess of the Winkler foundation and /£ s the depth of the layer. The full-
field clasticity solution of this problem is dertved and presented in the Appendix.
For a rigid indenter on a layer, the boundary conditions on the upper surface ire

wi(r, 0y =3—f(r), pry>0, for r<c: plr)=0, tor r>c¢  (2abyo)

where § is displacement at the center of the indenter, ¢ s the contact radius and f(r) 15 the
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Fig. 1. Problem configurations : (a) an axisymmetric load on a fayer, (b) 1 conical indenter on the
Layer, (¢} o paraboloidal indenter on the layer, (d) an ellipsoidal indenter on the layer.
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surface profile of the indenter. For the conical, paraboloidal and ellipsoidal indenters (Figs
1b.c.d). f(r) can be expressed, respectively, as

f(r)y =rcota, (3a)
f(r)y=r*]2p, (3b)

f(r) =e(a—/a*—r). (3c)

where p is the radius of curvature and e = b/a.

The parameter //A is a useful measure of the interaction between the layer and the
underlying foundation; / is usually called the ‘“‘characteristic length™ or the “‘radius of
relative stiffness™ (Westergaard. 1926) and is defined by

1*=Dik, D= Eh/12, (4a.b)

in which D is the flexural rigidity of the layer and £ = E/(1 —v?*); E and v are the elasticity
modulus and Poisson's ratio of the layer, respectively. Clearly, when the Winkler foundation
is infinitely rigid. / = 0. and the elasticity solutions {A3)-(A8) reduce to the fundamental
solutions for a layer on a rigid base (Burmister, 1945). To ascertain the general variation
of I/, a few typical ranges are presented in Table 1. in which //A is given by (4a,b). However,
in practical terms it should be pointed out that the Winkler foundation model is a convenient
approximation and that the stiffness parameter k is generally not well defined (except in
the case of a floating ice sheet). The value of k depends on the load distribution and intensity
and also on the depth of the underlying material.

As shown in the Appendix, if the nonzero portion of the surface pressure is expressed
as

e de

p(r) = —o.(r.0) = — oo, (0€r<o (5)
, \/!.z -
the auxiliary function ¢(7) must satisfy the equation
24
o) = - POK(t,s)ds—g(n), 0Lt<€¢c 6)
i
where, with L*(Zh) defined in (A16)
K(t.5) = j‘ L*(Eh) sin (&1) sin (&s) d&, (7a)
]
Ed [ rf(
o) = 10 (70)

= - o r.
nt dt 0 /12_',2

Since ¢(r) is a regular function for the indenter profiles considered, this is a Fredholm

Table |. Typical range of I/h for different material combinations

E (GPa) k(MNm-" h(m) ih
Lithosphere/mantlc 20-100 0.025-0.035 10*-2x 10° 0.7-14
Steel/concrete 207 5000-20000 0.02-0.1 1.7-3.6
Concrete/soil 20-30 50-220 0.1-1 1.7-4.6
Freshwater ice/water 3-7 0.0t 0.05-1 12-33

Steel/rubber 207 0.03-0.1 0.02-0.1 36-73
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integral equation of the second kind and is solved numerically using Gauss-Legendre
quadrature.

Once the function ¢(r) has been determined. all other physical quantities can be
calculated from ¢(¢) ; from (5) and the equilibrium condition, the total load is

) i

P=2n f p(Hrdr= -2n J’f tp(n) de, (8

and the center displacement from (All) is

(v e « 1 =
o= —{J o(0) de + ;J ¢(1)J L*(Zh) S‘“é“’ dé d:}/g'. (9)

In a similar way, the normal stress and the bending moment at the center can also be
calculated.

Based on thin plate theory, the bending moment M(r) and the stress o,(r, A) are
proportional, with a(r) = 6M(r)/A*. It has been found that this equation tends to over-
estimate the stress at the lower surface of thicker layers, approximately 20% for //h = 1,
and 5% for l/h = 2. However, for thinner layers with [/h > 4, the differences are minimal
and the stress can be calculated directly from the moment.

The behavior of the kernel function K(¢, 5) defined in (7a) depends on the function
L*(Eh) [see (A16)] which in turn depends on the values of /A and decays exponentially as
the argument becomes large. When /A > 4 (that is, a softer foundation or shallow layer),
the area enclosed by L*(&h) and the horizontal axis s concentrated ncar the origin. The
integration then needs to be evaluated only over a small range of ¢. Therefore, Gauss
quadrature can be used for these cases. On the other hand, when I/ < 4, the arca spreads
over a4 wider range, and evaluating the integral using Gauss quadrature tends to be time
consuming. A better procedure in this case is to express the function L*(¢h) in the form of
an exponential serics such that the integration can be done analytically. This method 1s
discussed by Dempsey er al. (1989).

The function ¢(r) in (7b) can be calculated for different indenter profiles. For the
conical, paraboloidal and ellipsoidal indenter, respectively,

g(t) = E" cot «/2, (10a)
gty = 2L |mp, (10b)

= ¢l” {tanh -1 (l) y-_{,/a___,}/ (10‘
g(7) = e’ {tan " + l—(—l—/u)l . C)

When the ratio of the contact radius to the semiaxis ¢/a is small, (10c) can be approximated
by the expression in (10b) with 1/p replaced by the length e/a. For a spherical indenter
(e = 1), the latter expression is equivalent to that in (10b). Therefore, an ellipsoidal indenter
can be trcated as a paraboloidal indenter if the ratio ¢/a is small (c¢/a < 0.1). Such a
simplification is made not only for mathematical convenience, but also because the fun-
damental assumption of small deformations in lincar elasticity requires that the ratio c/a
be small. For an cllipsoidal indenter with a small e value, however, a meaningful solution
for a large c¢/a valuc is possible and the cxpression (10c) then has to be used. A rigid
cllipsoidal indenter becomes a rigid flat-ended cylindrical indenter as ¢ — 0. The flat-ended
cylindrical indenter is treated in this paper by allowing ¢ - 0.

More general solutions are readily obtained by expressing the indenter profile in
polynomial form as
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J{r) = i a,r". (i)

nw i

An analytical polynomial expression for g(s) can then be obtained. The associated solution
can be carried out exactly as the other cases so long as the indenter has no sharp edge in
contact with the layer.

HALF SPACE SOLUTIONS

When the layer depth becomes infinitely large in comparison to the contact region,
the title problem reduces to the indentation of an elastic half space by rigid punches. Ana-
lytical solutions can be derived to provide checking cases. As ¢/h—0, L*(¢h) — 0 and
K(t, 5) — 0, then (6) and (9) become

¢(t) = —g(1), 6= —-{f qS(t)dt}/E’. (12a.b)

The contact pressure and load can be calculated from (5) and (8), respectively.

It is important to note, from (12a), that function ¢(2) is a regular function for the three
indenter profiles discussed. For a finite layer depth, the shape of ¢(r) may be different, but
there will be no singularity involved. Thus Gauss-Legendre quadrature can be used to solve
for ¢(r) from (6). The formulation given above quickly provides the following results, most
of which have long been known (Timoshenko and Goodicr, 1969).

For a conical indenter (Sneddon, 1951)

dtana n  Ptana n  p(r) ¢
A i (R S L G R B T abc
p 3 e 3 COs (r) (13a,b,¢)

For a paraboloidal indenter (Hertz, 1881)

1= (/o). (14a,b.c)

For an ellipsoidal indenter (Segedin, 1957),

S ' P 2 \2 . .
2 = tanh~! (f) i = (3) {[(i) + !] tanh ™" (i) - i}. (15a,b)
ec a Ece ¢ a a a

piry L[ f _,(_:_) t/a } dr
E‘ewn_[ {tanh a +l—(1/a)2 \/1.,.__’2 (15¢)

The last expression can be evaluated numerically.

Finally, the case of an ellipsoidal indenter with e — 0 can be treated as a flat-ended
cylindrical indenter, for which equations were derived by Boussinesq (1885), with further
work being done by Sneddon (1946),

20aE | pir) _ 1

P b 2 f1—(rla)?

For an ellipsoidal indenter on a half space, the contact pressure distributions are

(16a,b)
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Fig. 2. Contact pressure distributions of an ellipsoidal indenter on a half space.

plotted in Fig. 2 for different ¢/a ratios. The distribution patterns gradually change from
that of a paraboloidal indenter to that of a flat-ended cylinder as ¢/« increases.

RIGID BASE SOLUTIONS

Another interesting special case for the title problem is an elastic layer supported by a
rigid smooth base. The associated solution is obtained by letting the stiffness of the Winkler
foundation approach infinity (//# — 0). For a conical indeater, the total load and center
displacement are plotted in Fig. 3a. The center pressure for the conical indenter is infinite,
The center displacement, total load, and the center pressure for an cllipsoidal indenter are
plotted in Figs 3bcd, respectively. The same quantitics for a parabolowdal indenter are very
similar to those of ¢/a = 0.1 with ¢/e 1n the ordinate being replaced by p in Figs 3beud.
More detailed discussion for this case can be found in a paper by Li and Dempsey (1990).
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Fig. 3. Indentation of a layer underlain by a rigid smooth base: (a} load and displacement of a

conical indenter, (b) displacerient of ellipsoidal indenters (ED. (¢) load of EL (d) center pressure

of EL {For a paraboloidal indenter, follow the ce = 0.1 hnes in (b). (¢). (d) and replace a.e of
ordinates in (b). {c) by p}
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For a very thin layer, h/c — 0, asymptotic solutions can be derived with two assump-
tions: (1) the material under the indenter is in a state of confined compression, i.e.
g = eE(1—v)/(1+v)(1 =2v) = ¢E", and (2) the layer deformation at the edge of the con-
tact region is zero. For instance, the approximate surface displacement and pressure distri-
bution for an ellipsoidal indenter on a_thin layer can be expressed as w(r) = hp(r)/E’ =
d—e(a—./a*—r?). where & = e(a—/a*—c?) since w(c) = 0 is assumed. After integra-
tion and rearrangement, the following relations can be derived,

2
N (D) (172)

ec

Pa__¢ {1 % 1% —(c/a):)“]}. (17b)

JnEcte h{2e® 2c¢° 3¢
p(©@) ¢ da 2nEcle

PR L oamzee 17
pe  Ziect  Pa (17e)

For a paraboloidal indenter on a thin layer, assuming c/a small and replacing a/e by p, the
approximate expressions are simplified to

C
=y =, TS o7 = 2, 18a,b.c)
¢t 2" 2mE¢ 8K p,, (
For a conical indenter, similar relations can be found as
dtlana Pltana ¢
R L e T (19a,b)
¢ neE 34

CONICAL INDENTER

The relations between the total load, contact radius, center displacement and center
bending moment for the conical indenter on a layer underlain by a Winkler foundation are
plotted in Fig. 4. Note that the bending moment in Fig. 4d increases as //h increases. The
limiting value for the moment is infinity for {/h — o0, as predicted by thin plate theory.

Since the layer behuves more like a thin plate as the /A ratio increases, thin plate
solutions serve to provide appropriate normalization in these diagrams. The corresponding
solutions are obtained from the point load case, for which the solution was first provided
by Hertz (1884) (see also Timoshenko and Woinowsky-Kricger, 1959)

2 23

PI: Pi
wir) = — 2D kei (r/l), & =w(0)= 3D {20a,b)

Equation (20b) produces the straight line in Fig. 4c. It can be scen that the elasticity solution
is indeed well approximated by the plate solution as //A increases. The relationship between
indentation and contact radius (Fig. 4a), and the load and contact radius (Fig. 4b) are not
well approximated by thin plate theory.

As the total load increasces, the conical indenter may start to make contact with the layer
surface over a separate annular region in addition to the central contact region. This case
should be excluded since the formulation is not valid for multiple regions. From thin plate
theory, the condition to avoid the case of multiple contact regions is

wir) < w(@)—rcota, or Pltan{(a)/D < 11.6. (21a,b)

The ranges of total load in Fig. 4 are set according to this condition. The exact value of the
critical load for a layer to exhibit contact regions is difficult to derive from the elasticity
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Fig, 4. Conmcal indenter on a layer underkain by i Winkler foundation: (a) load vs contact radius,
(b) center displacement vs contaet radius, (<) load vs center displucement, (d) center bending
moment vs lowd.

formulation. However, 1t can be anticipated that the range for a thicker layer is smaller,
since the total deformation of a layer can be considered approximately as the combination
of the plate deformation and the focal deformation. The larger the tocal deformation, the
casier it is for multiple contact regions to occur.

Within the limitation of (21b), the contact pressure distributions for a conical indenter
are essentially the sume as given in (13¢) for a half space: infinite at the center and zero at
the edge. The pressure shifts slightly towards the center as ¢/f and I/l increase.

PARABOLOIDAL INDENTER

Shown in Fig. 5 are the contact pressure distributions given different ¢/ and /A values
for a paraboloidal indenter on a layer underlain by a Winkler foundation. As the ¢/f, l[/h
ratios increase, the contact pressure distribution gradually changes from a hemispherical
Hertzian contact pressure distribution to the large arca contact pressure distributions of
the type found by Keer and Miller (1983) for a circular layer supported elastically on edge
supports. The large concentration of contact pressure at the edge of the contact region
approaches the limiting line pressure predicted by plate theory. Clearly, the plate solutions
become more accurate as both ¢/f and /// increase. Otherwise, clasticity solutions have to
be used. Shown in Fig. 6 are the associated relations of displacement, load, contact radius
and center bending moment. Note that variables are normalized so that the elasticity
solutions and the plate solutions can be plotted together. Again, the plate solution becomes
more accurate as ¢/l and {/h increase. Surprisingly good agreement is found in Fig. 6c for
the load displacement relation. The advantage of the plate solution, of course. is that all
the relations can be expressed analytically. The derivation of the latter solution is now
described bricfly.

The surface displacement of an infinitely large thin plate on a Winkler foundation
outside the contact region can be expressed as {Timoshenko and Woinowsky-Krieger, 1959)
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Fig. 6. Paraboloidal indenter on a layer underlain by a Winkler foundation ; (a) center displacement
vs contact radius, (b} load vs contact radius, (¢} load vs center displacement, (d) center bending
moment vs load.

w,(r) = C, ker (r/l) + C, kei (r/]).

8t

The two constants can be determined from the compatibility conditions at the edge of the
contact region, i.e.



82 J. P. DeMmpPSEY er ul.

wy(c) = —cip, wilc) = —1ip. (23a.b)

Within the contact region. the curvature of the plate is constant. It can be concluded.
therefore. that the bending moments are constant, that the shear forces are zero, and that
the contact pressure is the same as the support reaction which is proportional to the
displacement for a Winkler foundation. The shear force exerted by the external part of the
plate is balanced by a circular line force on the indenter. The displacement of the indenter
can be calculated from the displacement at the edge of the contact region and the total load
is the summation of the distributed pressure and the line force. The final relationships
derived are now expressed as functions of ¢//:

o0 _ ¢ UAB = AB) (/A + B 243

EERTE A4+ BB (4
1_’5) _ _";j 4{(';'1)2(.43’——,4'3)f“(i‘;'[)(ﬂf’:-i-B’:)~((’;'!)}(A:+B:} (24b)
D 4  AA+BB - -
pr) D {(Sp [ r ('): .
pe el 20 \0) e

where
A =ker(c/l). B=kei(c/l), A =ker (¢/l), B =kei (¢/1), (25)

are the Kelvin functions of the fiest kind and their derivatives. For a layer with a large
{ih value, the transverse and shear deformation can be neglected and the above expressions
provide a simplificd solution.

ELLIPSOIDAL INDENTER

Contact pressure distributions for an cllipsoidal indenter on a layer undertain by a
Winkler foundation are shown in Fig. 7 for different ¢/a, I/ and ofh ratios. Though different

c/h=1/4

1/2

!

F4
4
0.2 4 ¢c/a = 05 ¢/h =1 | c/a = 0.5 Uh = 2
c.0 ey A 0.0 ¥ T r 1
0.0 0.2 0.4 0.8 0.8 1.0 0.0 Q.2 0.4 0.6 0.8 1.0
(a)

P(T)/ Doy

(<)

Fig. 7. Contuct pressure for an cllipsoidal indenter on a layer underlain by a Winkler foundation.
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Fig. 8. Ellipsoidal indenter on a layer underlain by a Winkler foundation ¢/a = 0.5: (a) center
displacement vs contact radius, (h) load vs contact radius, (<) load vs center displacement, (d) center
bending moment vs foad.

choices of parameters produce different curves, these figures illustrate the general tendency
the maximum contact pressure shifts from the center toward the edge of the contact region
as the values of ¢/a, Hh and ok increase. At some juncture, however, the contact pressure
becomes negative within the contact region (Fig. 7d). The solution then becomes invalid
unless the indenter is assumed to be bonded to the layer surfuce.

In comparison to the paraboloidal indenter, there is one more controlling parameter
v/a involved, which means the size of the indenter is also important. This makes a complete
presentation of results difficult. The relations between the displacement, load, contact radius
and center bending moment are plotted for ¢fa = 0.5 in Fig. 8and for ¢fu =09 in Fig. 9,
respectively. For ¢/a < 0.1, the diagrams are the same as for the paraboloidal indenter case
with p being replaced by a/e. It has been found that negative contact pressure is more likely
to occur us ¢/a increases. Therefore, the geometry most likely to exhibit contact separation
is a flat-ended cylinder since then ¢/a = 1. The occurrence of negative pressure is indicated
by the asterisks on the line in the diagrams. Beyond these asterisks, the indenter has to be
assumed bonded to the layer surface for the results to be applicable.

It is important to note, from (10c¢) for the ellipsoidal indenter, that the function g(f) is
proportional to the ecceatricity of the cllipsoidal indenter ¢, Consequently, the total load,
the displacement, and stresses and bending moments are all proportional to e. Further, the
ratios of load to displacement, and stress to total load, are independent of ¢ for the same
reason. Presentation of the results can, therefore, be simplified significantly. To thisend, it
is interesting to note the conclusion, reached by Segedin (1957) for an ellipsoidal indenter
on a half spacc, that the load-displacement ratio is the same as that of a flat-ended indenter
ifc=a

CONCLUSIONS

Three different axisymmetric indenter profiles have been considered: conical, par-
aboloidal and ellipsoidal. The contact behaviors do not depend on the size of indenters for
the first two indenters, but do depend on the size of the last indenter. This makes the
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Fig. 9. Ellipsoidal indenter on a layer underlain by a Winkler foundation ¢/u = 0.9: (a) center
displacernent vs contact radius, (b) load vs contact radius, (¢) load vs center displacement, (d) center
bending moment vs load.

complete presentation of results difficuit for the cllipsoidal indenter. Interestingly, the load -
displacement ratio and stress -load ratio do not depend on e, the eccentricity of the ellipsoid.

The most important parameter in the title problem is the ratio of characteristic length
to the layer depth, {4, The greater the £/h ratio, the softer the foundation, or the thinner
the layer. Solutions for an elastic half space and a layer on 4 rigid smooth base are derived
as special cases by letting I/h — 0. On the other hand, as the layer depth reduces and the /74
ratio increases, the transverse deformation and the shear deformation of the luyer become
less significant, in which case, approxirate solutions derived from the thin plate theory are
somewhat applicable, These solutions include the load—displucement relation for the conical
indenter, the relations among load, contact radius, maximum bending moment and dis-
placement for the paraboloidal indenter. The load versus displucement response for the
paraboloidal indenter is very accurate if {/h > 4, while other expressions provide limiting
values as Ifh — =, The derivation of thin plate solutions for the ellipsoidal indenter is more
complicated and the final expressions do not serve well as “simplified solutions™.

Hertzian contact pressure distributions are observed for both paraboloidal and ellip-
soidal indenters when the contact radii are small, The distributions gradually change to
those of lurge area contact, with the maximum pressure shifting from the center to the edge
of the contact region, as the ratios of ¢fl, Ifh and c/a increase. Separation between the
cllipsoidal indenter and the layer surface is more likely to occur for larger ¢//, I/ and c/a
ratios. Then a different formulation is required unless the indenter is assumed to be bonded
to the layer surface.
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APPENDIX: GENERAL AXISYMMETRIC SOLUTION

The axisymmetric problem of an infinite layer supported by a Winkler foundation and axisymmetrically
loaded on the upper surface is solved by finding a stress function ¢(r, 2). which satisfies the biharmonic equation

Vig(r.z) =0, (A}

as well us the boundury conditions in (1a-d). The solution of this equation for the problem cun be expressed as
$lr.2) = J LUC () + Ci(&)z] cosh (£2) + (CoAE) + Co(&)z) sinh (E2) 1 o(rd) dE. (A2)
0

The functions C (), Cx(E). Cy(E) and Cy(¢) are determined by the boundary conditions ([a—-d). The stresses and
displacements are then calculated from ¢(r, 2} (Sneddon, 1951). The final expressions are found to be, with
S =sinh fi, ' = cosh fi, S. = sinh ¢z, C, = cosh ézand § = &h.

CERO L s s L .
a,(r,2) = f 2‘}0;)-- {[;:.S'—(Ii+SC')]S_.+[S~ +p1 =22+ SO)C, + & 1{E:SC-S3S.

R V= FE Y
+[SC - —E=8°|C.} p JolEry dE— - _S‘_) (628 = (1 =2v)}(B+ SOIS. +[(1 -2v)§*
rlo d(p)

4

i {[£z85C—(1-2v)S°)S. +[(1 =2v)SC - - f:S’]C..}}J,(,’r) dé. (AY)

h

+# =3B+ SOIC.+ &

4

ooy | SFR ) h :
aul(r.2) = 3",[, dy {S Cm(+50S,+ o (=S s;+scc,}}1,,(cr) dé

i .

o {E=5C~(1-2v)S%]S.

117 F(& .
+ ;J; J((‘I;‘;{[EZS‘—“ —2V)(ﬂ+SC)]S_,+[(|_zv)s!+ﬂz_€:(ﬁ+sc.)]c:+

+[ -2v)sc—11—5:s=]c,.}}/.(:r) dé. (Ad)
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where = $hy po= E72(1 4 v) is the shear modulus, while F(E) and () are defined as follows

s

F) = — 1 plrirdy$ndr. (A%

n
D)

R .
Ay = sinh* f—fT + 6;@ (8 +sinh f cosh /i), (AL

The parimeter s defined in (4). Note that the surface displacement ean be determined from {A8) simply as

R
wir,0) ~ - PZ}‘ FUEHAB (80 42, (AL
. 1)
where B = E7{1 —v*) and
L = | {pasinh poosh pe " sinnt g A12
A} = fi+sinh ficos f+(,ﬂ;*””” #1. (AL

I the auliary function ${7) introduced by Sneddon (1960},

() =J‘¢(l) sin (E0) dy, (A1
[}

is substituted into the surface pressure given by (AS), then

(s . OLY
SEEMWGn dg = - LA

N PER
Jror

piry = —a.(r.0) = — (Al

Clearly, condition (2c) is automatically satisficd by this substitution. Substituting {A13) into {Al1}, then into
{2a), and differentinting the resulting cquation with respect to r give

;J; ) L‘ LBy s 3N, (Endédr = —ftr). {ALS)
By redefining
Ly = 1+ Lo (AL6)
and noting that
- Hr SR, ter
L sin (3N, Gr1ds = {(}, - (ALT)

it is immediate that eqn (A15) may be written in the form of an Abel integral equation
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J 00 4= rj swkir.ndi-Erfie. (AI8)
b /et 42 o M
Y
where
Rir,1) = J L*(B) sin (20)J,(3r) dE. (A19)
0

The solution of (A18) is (Sneddon. 1960)

2d N . E . r
tp(1) = - d—lJ; {rj; P(HK(r.s) ds— ?rf (r)} — dr. (A20)

Jir-r
By using the relation

1d {"riJ(én .
n ajn ———‘dr = sin (1), (A2l)

‘/t:—r'

eqn (A20) can be simplified to a Fredholm integral equation of the second kind. The contact problem stated in
(1)-(3) has now been reduced to the integral equation stated in (6).



